Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Virol J ; 20(1): 122, 2023 06 13.
Article in English | MEDLINE | ID: covidwho-20245055

ABSTRACT

PURPOSE: Influenza virus (IFV) causes acute respiratory tract infection (ARTI) and leads to high morbidity and mortality annually. This study explored the epidemiological change of IFV after the implementation of the universal two-child policy and evaluated the impact of coronavirus disease 2019 (COVID-19) pandemic on the detection of IFV. METHODS: Hospitalized children under 18 years with ARTI were recruited from Hubei Maternal and Child Healthcare Hospital of Hubei Province from January 2014 to June 2022. The positive rates of IFV were compared among different periods by the implementation of the universal two-child policy and public health measures against COVID-19 pandemic. RESULTS: Among 75,128 hospitalized children with ARTI, the positive rate of IFV was 1.98% (1486/75128, 95% CI 1.88-2.01). Children aged 6-17 years had the highest positive rate of IFV (166/5504, 3.02%, 95% CI 2.58-3.50). The positive rate of IFV dropped to the lowest in 2015, then increased constantly and peaked in 2019. After the universal two-child policy implementation, the positive rate of IFV among all the hospitalized children increased from 0.40% during 2014-2015 to 2.70% during 2017-2019 (RR 6.72, 95% CI 4.94-9.13, P < 0.001), particularly children under one year shown a violent increasing trend from 0.20 to 2.01% (RR 10.26, 95% CI 5.47-19.23, P < 0.001). During the initial outbreak of COVID-19, the positive rate of IFV decreased sharply compared to that before COVID-19 (0.35% vs. 3.37%, RR 0.10, 95% CI 0.04-0.28, P < 0.001), and then rebounded to 0.91%, lower than the level before COVID-19 (RR 0.26, 95% CI 0.20-0.36, P < 0.001). CONCLUSION: IFV epidemiological pattern has changed after the implementation of the universal two-child policy. More attention should be emphasized to comprehend the health benefits generated by COVID-19 restrictions on IFV transmission in future.


Subject(s)
COVID-19 , Orthomyxoviridae , Respiratory Tract Infections , Child , Humans , Adolescent , Child, Hospitalized , Pandemics , COVID-19/epidemiology , China/epidemiology , Respiratory Tract Infections/epidemiology
2.
JMIR Public Health Surveill ; 9: e43941, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2287825

ABSTRACT

BACKGROUND: Longitudinal studies characterizing the epidemic trend of respiratory syncytial virus (RSV) in Hubei Province are scarce. OBJECTIVE: We aimed to depict the dynamics of the RSV epidemic among hospitalized children with acute respiratory tract infections (ARTIs) during 2014 to 2022 in the Maternal and Child Health Hospital of Hubei Province and investigate the influence of the 2-child policy and the COVID-19 pandemic on RSV prevalence. METHODS: The medical records and testing results of hospitalized children with ARTI from January 2014 to June 2022 were extracted. Nasopharyngeal samples were tested with direct immunofluorescence assay. Detection rates of RSV were categorized according to the diagnosis of patients: (1) overall, (2) upper respiratory tract infection (URTI), and (3) lower respiratory tract infection (LRTI). Poisson regression models were used to investigate the association between RSV detection rate and age, gender, or diagnosis. The detection rates of RSV before and after the implementation of the universal 2-child policy were compared using a Poisson regression model. Multiple comparisons of RSV detection rates were conducted among 3 stages of the COVID-19 pandemic using chi-square tests. Seasonal autoregressive integrated moving average was performed to predict RSV behaviors from February 2020 to June 2020 under the assumption of a non-COVID-19 scenario. RESULTS: Among 75,128 hospitalized children with ARTI, 11.1% (8336/75,128) were RSV-positive. Children aged <1 year had higher detection rates than older children (4204/26,498, 15.9% vs 74/5504, 1.3%; P<.001), and children with LRTI had higher detection rates than children with URTI (7733/53,145, 14.6% vs 603/21,983, 2.7%; P<.001). Among all the children, a clear seasonal pattern of the RSV epidemic was observed before 2021. Most of the highest detection rates were concentrated between December and February. The yearly detection rate of RSV remained at a relatively low level (about 8%) from 2014 to 2017, then increased to 12% and above from 2018. The highest monthly detection rate was in December 2018 (539/1493, 36.1%), and the highest yearly rate was in 2021 (1372/9328, 14.7%). There was a moderate increase in the RSV detection rate after the 2-child policy was implemented (before: 860/10,446, 8.2% vs after: 4920/43,916, 11.2%; P<.001). The largest increase, by 5.83%, occurred in children aged <1 year. The RSV epidemic level decreased sharply in the short term after the COVID-19 outbreak (detection rate before: 1600/17,010, 9.4% vs after: 32/1135, 2.8%; P<.001). The largest decrease, by 12.0%, occurred in children aged <1 year, but a rebounding epidemic occurred after 2020 (680/5744, 11.8%; P<.001). CONCLUSIONS: Children have been experiencing increased prevalence of RSV since 2018 based on surveillance from a hospital in Hubei Province with a large sample size. The 2-child policy might have increased the RSV prevalence, and the COVID-19 epidemic had a temporary inhibitory effect on RSV transmission. Vaccines against RSV are urgently needed.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Humans , Child , Adolescent , Respiratory Syncytial Virus Infections/epidemiology , Child, Hospitalized , Pandemics , COVID-19/epidemiology , Respiratory Tract Infections/epidemiology , Longitudinal Studies , Hospitals , China/epidemiology
3.
J Med Virol ; : e28256, 2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2237628

ABSTRACT

We aimed to investigate the hesitancy and willingness of parents to vaccinate themselves and their children with a booster dose against severe acute respiratory syndrome coronavirus 2 and related factors. We conducted a cross-sectional study in Puyang city, China. The information was collected, including demographic characteristics, willingness to receive a booster dose of coronavirus disease 2019 (COVID-19) vaccine, and attitudes and concerns toward COVID-19 and vaccines. Vaccine hesitancy was assessed in individuals completing the first two doses and booster eligible, while vaccine willingness was assessed in those completing the first two doses and not yet booster eligible. Among the participants completing two primary doses while not meeting the booster criteria, 95.4% (1465/1536) and 95.0% (1385/1458) had a willingness to a booster dose of COVID-19 vaccine for themselves and their children, respectively. Among the participants who met the booster criteria, 40.3% had vaccine hesitancy. Vaccine hesitancy and unwillingness tended to occur in people who were younger, less educated, less healthy, and with unsureness of vaccines' efficacy and adverse events (AE). The younger age of children, children in poorer health, and concern about the efficacy and AE of vaccines contributed to the participants' unwillingness to vaccinate their children. We observed a high willingness to the booster dose of COVID-19 vaccine both for the parents and their children, regardless of the eligibility to a booster dose. However, 40% of people had delayed vaccination behaviors. The promotion of scientific knowledge of vaccines' effectiveness and safety is needed, especially for people in poor health and parents with young children. Timely disclosure of AE caused by COVID-19 vaccines and proper aiding offered to people encountering AE are suggested.

4.
J Med Virol ; 95(2): e28514, 2023 02.
Article in English | MEDLINE | ID: covidwho-2209119

ABSTRACT

This study aimed to explore the association between air pollutants and outpatient visits for influenza-like illnesses (ILI) under the coronavirus disease 2019 (COVID-19) stage in the subcenter of Beijing. The data on ILI in the subcenter of Beijing from January 1, 2018 to December 31, 2020 were obtained from the Beijing Influenza Surveillance Network. A generalized additive Poisson model was applied to examine the associations between the concentrations of air pollutants and daily outpatient visits for ILI when controlling meteorological factors and temporal trend. A total of 171 943 ILI patients were included. In the pre-coronavirus disease 2019 (COVID-19) stage, an increased risk of ILI outpatient visits was associated to a high air quality index (AQI) and the high concentrations of particulate matter less than 2.5 (PM2.5 ), particulate matter 10 (PM10 ), sulphur dioxide (SO2 ), nitrogen dioxide (NO2 ), and carbon monoxide (CO), and a low concentration of ozone (O3 ) on lag0 day and lag1 day, while a higher increased risk of ILI outpatient visits was observed by the air pollutants in the COVID-19 stage on lag0 day. Except for PM10 , the concentrations of other air pollutants on lag1 day were not significantly associated with an increased risk of ILI outpatient visits during the COVID-19 stage. The findings that air pollutants had enhanced immediate effects and diminished lag-effects on the risk of ILI outpatient visits during the COVID-19 pandemic, which is important for the development of public health and environmental governance strategies.


Subject(s)
Air Pollutants , COVID-19 , Influenza, Human , Humans , Air Pollutants/analysis , Beijing , Influenza, Human/epidemiology , Outpatients , Pandemics , Conservation of Natural Resources , COVID-19/epidemiology , Environmental Policy , Particulate Matter/analysis , China/epidemiology
5.
Front Med (Lausanne) ; 9: 822796, 2022.
Article in English | MEDLINE | ID: covidwho-2009873

ABSTRACT

Background: The changing pattern of pathogen spectrum causing herpangina in the time of coronavirus disease 2019 (COVID-19) pandemic was unknown. The purpose of this study was to investigate the changes on the molecular epidemiology of herpangina children during 2019-2020 in Tongzhou district, Beijing, China. Method: From January 2019 to December 2020, children diagnosed with herpangina were recruited by the staff from Tongzhou Center for Disease Control and Prevention (CDC) in Beijing. Viral RNA extraction from pharyngeal swabs was used for enterovirus (EV) detection and the complete VP1 gene was sequenced. The phylogenetic analysis was performed based on all VP1 sequences for EV genotypes. Result: A total of 1,331 herpangina children were identified during 2019-2020 with 1,121 in 2019 and 210 in 2020, respectively. The predominant epidemic peak of herpangina children was in summer and autumn of 2019, but not observed in 2020. Compared to the number of herpangina children reported in 2019, it decreased sharply in 2020. Among 129 samples tested in 2019, 61 (47.3%) children were detected with EV, while 22.5% (20/89) were positive in 2020. The positive rate for EV increased since June 2019, peaked at August 2019, and decreased continuously until February 2020. No cases were observed from February to July in 2020, and the positive rate of EV rebounded to previous level since August 2020. Four genotypes, including coxsackievirus A6 (CV-A6, 9.3%), CV-A4 (7.8%), CV-A10 (2.3%) and CV-A16 (10.1%), were identified in 2019, and only three genotypes, including CV-A6 (9.0%), CV-A10 (6.7%) and CV-A16 (1.1%), were identified in 2020. The phylogenetic analysis showed that all CV-A6 strains from Tongzhou located in Group C, and the predominant strains mainly located in C2-C4 subgroups during 2016-2018 and changed into C1 subgroup during 2018-2020. CV-A16 strains mainly located in Group B, which consisting of strains widely distributed around the world. Conclusions: The predominant genotypes gradually shifted from CV-A16, CV-A4 and CV-A6 in 2019 to CV-A6 in 2020 under COVID-19 pandemic. Genotype-based surveillance will provide robust evidence and facilitate the development of public health measures.

6.
J Med Virol ; 94(8): 3801-3810, 2022 08.
Article in English | MEDLINE | ID: covidwho-1888745

ABSTRACT

Influenza-like illness (ILI) varies in intensity year by year, generally keeping a stable pattern except for great changes of its epidemic pattern. Of the most impacting factors, urbanization has been suggested as shaping the intensity of influenza epidemics. Besides, growing evidence indicates the nonpharmaceutical interventions (NPIs) to severe acute respiratory syndrome coronavirus 2 offer great advantages in controlling infectious diseases. The present study aimed to evaluate the impact of urbanization and NPIs on the dynamic of ILI in Tongzhou, Beijing, during January 2013 to March 2021. ILI epidemiological surveillance data in Tongzhou district were obtained from Beijing Influenza Surveillance Network and separated into three periods of urbanization and four intervals of coronavirus disease 2019 pandemic. Standardized average incidence rates of ILI in each separate stages were calculated and compared by using Wilson method and time series model of seasonal ARIMA. Influenza seasonal outbreaks showed similar epidemic size and intensity before urbanization during 2013-2016. Increased ILI activity was found during the process of Tongzhou's urbanization during 2017-2019, with the rate difference of 2.48 (95% confidence interva [CI]: 2.44, 2.52) and the rate ratio of 1.75 (95% CI: 1.74, 1.76) of ILI incidence between preurbanization and urbanization periods. ILI activity abruptly decreased from the beginning of 2020 and kept at the bottom level almost in every epidemic interval. The top decrease in ILI activity by NPIs was shown in 5-14 years group in 2020-2021 influenza season, as 92.2% (95% CI: 78.3%, 95.2%). The results indicated that both urbanization and NPIs interrupted the epidemic pattern of ILI. We should pay more attention to public health when facing increasing population density, human contact, population mobility, and migration in the process of urbanization. NPIs and influenza vaccination should be implemented as necessary measures to protect people from common infectious diseases like ILI.


Subject(s)
COVID-19 , Influenza, Human , Virus Diseases , Beijing/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics , Seasons , Urbanization , Virus Diseases/epidemiology
7.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1824548

ABSTRACT

Background The changing pattern of pathogen spectrum causing herpangina in the time of coronavirus disease 2019 (COVID-19) pandemic was unknown. The purpose of this study was to investigate the changes on the molecular epidemiology of herpangina children during 2019-2020 in Tongzhou district, Beijing, China. Method From January 2019 to December 2020, children diagnosed with herpangina were recruited by the staff from Tongzhou Center for Disease Control and Prevention (CDC) in Beijing. Viral RNA extraction from pharyngeal swabs was used for enterovirus (EV) detection and the complete VP1 gene was sequenced. The phylogenetic analysis was performed based on all VP1 sequences for EV genotypes. Result A total of 1,331 herpangina children were identified during 2019-2020 with 1,121 in 2019 and 210 in 2020, respectively. The predominant epidemic peak of herpangina children was in summer and autumn of 2019, but not observed in 2020. Compared to the number of herpangina children reported in 2019, it decreased sharply in 2020. Among 129 samples tested in 2019, 61 (47.3%) children were detected with EV, while 22.5% (20/89) were positive in 2020. The positive rate for EV increased since June 2019, peaked at August 2019, and decreased continuously until February 2020. No cases were observed from February to July in 2020, and the positive rate of EV rebounded to previous level since August 2020. Four genotypes, including coxsackievirus A6 (CV-A6, 9.3%), CV-A4 (7.8%), CV-A10 (2.3%) and CV-A16 (10.1%), were identified in 2019, and only three genotypes, including CV-A6 (9.0%), CV-A10 (6.7%) and CV-A16 (1.1%), were identified in 2020. The phylogenetic analysis showed that all CV-A6 strains from Tongzhou located in Group C, and the predominant strains mainly located in C2-C4 subgroups during 2016-2018 and changed into C1 subgroup during 2018-2020. CV-A16 strains mainly located in Group B, which consisting of strains widely distributed around the world. Conclusions The predominant genotypes gradually shifted from CV-A16, CV-A4 and CV-A6 in 2019 to CV-A6 in 2020 under COVID-19 pandemic. Genotype-based surveillance will provide robust evidence and facilitate the development of public health measures.

SELECTION OF CITATIONS
SEARCH DETAIL